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Table I. Values of B3 which makes the heat loss in case of 2. L. C. Burmeister, Triangular fin performance by the heat 
no-tin larger than that in the case of a fin of infinite length balance integral method, ASME J. Heat Transfkr 101, 

for given values of B, and & 562-564 (1979). 
3. R. K. Irey, Errors in the one-dimensional fin solution, 

B, for ASMEJ. Heat Transfer 90, 175-116 (1968). 
4. H. H. Keller and E. V. Somers, Heat transfer from an 

BrIB, B, = 0.01 B, = 0.1 6, = 1 annular fin of constant thickness, ASME J. Heat Trans- 
fer 81,151-l% (1959). 

0 0.0704 0.2162 0.5854 5. 
0.25 0.0787 0.2438 0.6934 
0.5 0.0863 0.2678 0.7702 

0.75 0.0932 0.2893 0.8301 6. 
I 0.0996 0.3087 0.8796 

(a) if L for 0.99(~/~6~)~~ decreases monotonically as the 
ratio of &/B, increases, then the fin is useful for ail given 
values of BI and B2 ; 8. 

(b) if L for 0.99(Q/k&),,, varies irregularly as the ratio 
of B,/B, increases, then a check using Table I must be made 
to determine the fin’s usefulness ; 

(c) if L for 0.99(Q/k0,),,, is nearly zero as the ratio of 9. 
Bz/B, increases, then the fin is not useful for all values of Bt 
and 3,. 

10. 
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INTRODUCTION 

IN THIS paper, the effect of thermal-diffusion and diffusion- 
therm0 on transient and steady natural convection heat and 
mass transfer from a vertical surface are investigated numeri- 
cally. A helium-air mixture was selected as the fluid pair 
used in the study due to its radically different thermodyna~c 
properties as compared to other fluid pairs. Results showing 
steady temperature and concentration distributions and the 
total heat and mass transport from the wall with and without 
heat and mass transfer coupling are presented. Also, the 
transient variation of the heat flux from the wall including 

t To whom correspondence should be addressed. 

and neglecting the coupling effects are documented. 
The effect of diffusion-therm0 and thermal-diffusion on 

the transport of heat and mass were developed from the 
kinetic theory of gases by Chapman and -Cowling [I]. 
Wirshfelder et al. 121 exulained the nhenomena and derived 
the necessary for&lae‘ to calcufate the the~ai-diffusion 
coefficient and the thermal-diffusion factor for monatomic 
gases. Although the derivation is restricted to monatomic 
gases, they found that the error involved with applying the 
formulae to polyatomic gas mixtures is small. 

Hall [3] developed the energy, diffusion and momentum 
equations for multicomponent systems. He further simplified 
the equations of motion, energy and diffusion for a steady 
compressible, boundary layer flow of a binary mixture over 
a flat plate. 
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NOMENCLATURE 

mass fraction 
constant pressure specific heat 
coefficient of binary diffusion 
coefficient of thermal-diffusion 
gravitational acceleration 
Grashof number for heat transfer, defined by 
equation (14) 
effective Grashof number for combined heat 
and mass transfer, defined by equation (13) 
Grashof number for mass transfer, defined by 
equation (15) 
mass flux 
thermal conductivity 
thermal-diffusion ratio, D,/D, 2 
length of the plate 
molecular weight 
mole fraction 
Prandtl number 
heat flux 
nondimensional wall heat flux, defined by 
equation (12) 
steady-state nondimensional wall heat flux for 
heat transfer only, 0.3711 
specific gas constant 
Grashof number ratio, Gr,,,/Gr 
Schmidt number 
time 
absolute temperature 
nondimensional temperature ratio, defined by 
equation (9) 

u velocity parallel to the plate 
V velocity perpendicular to the plate 
x coordinate along the plate 
Y coordinate perpendicular to the 

plate. 

Greek symbols 
uT thermal-diffusion factor, defined by 

equation (7) 
B coefficient of thermal expansion 
‘I nondimensional position, 

(~lL)(Llx)“~(Gr,,,.) ‘M 
e nondimensional temperature 
Y kinematic viscosity 
P density 
5 nondimensional time, (~v/L~)(L/x)‘~~(G~,~,~) ‘j2. 

Subscipts 
1 diffusing gas 
2 inert gas 

L” 
free stream 
length of the plate 

W wall 
X X direction 
Y y direction. 

Superscript 
dimensionless quantities. 

Baron [4,5] analyzed steady flow of helium-air and Freon 
13-air mixtures. He found that the heat flux and recovery 
temperature changed considerably if the diffusion-therm0 
and thermal-diffusion effects were neglected. He also com- 
pared his results with experimental data and found that the 
experimental data agree fairly well with the analytical results 
that included the heat and mass transfer coupling effect. 

Tewfik [6] studied the steady flow of binary mixtures of 
hydrogen-helium and carbon dioxide-air over a flat plate. 
He found that the Nusselt number, including thermodynamic 
coupling, could be up to 3% different from the case where 
coupling was neglected. He also found that the effects of 
hydrogen and helium injection are larger than in the case of 
carbon dioxide injection. 

Sparrow et al. [7] numerically investigated plate, axi- 
symmetric stagnation flow and planar, free convection stag- 
nation flow including and neglecting diffusion-therm0 and 
thermal-diffusion effects. Binary mixtures of various gases 
with air were included in the study and the relative impor- 
tance of the diffusion-therm0 and thermal-diffusion effects 
were discussed. 

Mills and Wortman [8] analyzed steady plane stagnation 
flow for various binary air mixtures. They observed the effect 
of heat and mass transfer coupling for hydrogen injection to 
the boundary layer and concluded that, for this case, the 
et&t of coupling is important. Kendall and Bartlett [9] 
studied steady flow over a flat plate. They found, for this case, 
the thermal-diffusion effect was small, since the temperature 
gradients were small. 

Sparrow et al. [IO] also studied the case of natural con- 
vection heat and mass transfer from a horizontal cylinder 
for a helium-air mixture. They found that for the helium- 
air mixture, the coupling is very important and for increased 
Gr, the heat flux can change direction and heat would flow 
to the wall, although the free stream temperature was lower 
than the wall temperature. 

GOVERNING EQUATIONS 

Applying the Boussinesq approximation and assuming 
each component behaves like an ideal gas, the governing 
equations for combined natural convection heat and mass 
transfer from a vertical surface are similar to those presented 
by Hall [3]. In nondimensional form they are continuity 
equation 

E+!!=o 
ai aj 

momentum equation 

diffusion equation 

(3) 

and the energy equation, 

ae _ae _ae 1 8’8 R aT 
jp$“jj=prpc,~ 

M,M, MI Gr, 

x (M,(l_E,c,,)+M,E,c,,)2M,-_ 

x az”1+ 

1 

a,(1 --c,,E,p, a*8 
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FIG. I. (a) Transient variation of nondimensional wall heat flux with and without mass transfer. 
(b) Contribution of various terms on the transient non~mensionai wall heat flux. 

where the nondimensionahzed variables are defined as 

atp=o; E,(t:f)=l, e(T,n)=I, 

z&i) = 0, $;a) = ti;, 

as)i-+co; F,(t;x)=O, B(i;n)=O, 

a(< 2) = 0, 

at i=O; C,(X,j) = 0, e(m,.F) = 0, 

fq.t,_C) = 0, u{x, j) = 0. (6) 

(4) In these equations, the di~us~on-the~o and thermal- 
diffusion effects give rise to two additional properties. These 
are the thermal diffusion factor, ar, and the nondimensional 
temperature ratio, T,. The thermal diffusion factor, which is 
independent of the concentration, is given by 

k, XT = __ 
111112 

(7) 

where k7, the thermal-diffusion ratio, which has a theoretical 
(5) limit of 1 .O [2], is defined as 

and these equations are subject to the following non- 
dimensional boundary and initial conditions : @I 
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The nondimensional temperature ratio is defined as 

T, eT. 
Tw-Tco 

The heat ftux at the wall, g_., defined as 

q,=_&EJ 
ay c,cz 1 

where 

(9) 

(10) 

(11) 

was nondimensionaiized in a manner similar to that used 
by Hellums and Churchill [II]. This method of non- 
d~mensionali~atio~ removes the dependence of the wall heat 
Aux on position and renders the nondimensional wall heat 
flux (for heat transfer only) to be a function of Prandtl 
number only, The nondimensional heat flux is given by the 
following relation : 

where the effective Grashof number for combined heat and 
mass transfer, Gr,, is defined as given by refs. [12, 131 as 

where 

and 

(13) 

RESULTS 

Numerical simulations were conducted to investigate the 
effect of thermal-diffusion and diffusion-therm0 on the heat 
and mass transfer from a vertical surface. All thermophysical 
properties were calculated assuming the mixture was pri- 
marily air and the properties of air were evaluated at the 
wall temperature, which was selected to be 100 K. This is 
reasonable7 since the maximum concentration of He was less 
than 1% by weight and the largest temperature difference, 
between the wall and the free stream, was selected to be 5 K. 
This corresponds to the smallest value of T, which, as shown 
in the governing equations, maximizes the heat and mass 
transfer coupling effect. 

The equations were solved using an explicit finite-differ- 
encx method. Results of the case that considered heat transfer 
only, without ~ermal-diffusion and djffnsion-the~o~ were 
compared to similarity solutions and to the numerical results 
given by Hellurns and Churchill {I I] using different grid sizes. 
For a grid having 20 nodes in the x direction and 40 nodes 
in the y direction, the temperature and velocity profiles and 
Nusselt number obtained from the present numerical solu- 
tion agreed to within 0.1% with the results given by the 
similarity solution and Hellums and Churchill’s numerical 
solution [I lj for a range of Grashof numbers less than 106, 
well within the laminar range. This grid was used for ail 
subsequent simulations. 

Calculations were conducted neglecting either the dif- 
fusion-therm0 or thermal-diffusion effect. The results were 
invariant whether or not the thermal-diffusion effect was 
included in the formulation. This is consistent with the results 
reported by Sparrow et al. [I. 01. 

Figure 1 (a) shows the time-dependent variation of the heat 

transfer with and without mass transfer not including the 
effects of diffusion-thermo and thermal-diffusion. Time was 
nondimensionalized in a manner similar to Hellums and 
Churchill [t I] ; however, for the case of combined heat and 
mass transfer the effective Grashof number was used. The 
heat flux is normalized using Heflums and Churchill’s vafue 
for the steady slate heat flux from a wall for a case that 
includes only heat transfer effects (i.e. Q0 = 0.3711). These 
results show that by defining the effective Grashof number, 
the case of heat transfer only and combined heat and mass 
transfer, neglecting heat and mass transfer coupling effects, 
have a similar shape. Also, far a nondimensional time of 
5, the case of heat transfer only approaches Hellums and 
Churchill’s [ 1 I] results. This effective Grashof number is then 
used to present ail subsequent results. 

in Fig. f(b), the time dependence of the Fourier con- 
duction and the di~usion-~he~o effect are presented for the 
case of a helium-air mixture when heat and mass transfer 
coupling effects are included, These results show that the 
Fourier conduction and the diffusion-therm0 effect are 
opposite in sign. This renders the heat flux at the wall, for 
this case, to be essentially time invariant for T > 0.4. Also, 
these results show that the direction of heat flow can be in 
the opposite direction to the normal flow of heat given by 
the temperature gradient. This effect was previously observed 
by Sparrow et al. 17, 101. 

The effect of t~e~ai-diffusion aad diffusion-the~o on 
the steady temperature and concentration distributions was 
investigated next. These results for a helium-air mixture, 
given in Figs. 2(a) and (b), show that thermal-diffusion and 
diffusion-therm0 do not affect the concentration field. How- 
ever, the temperature field is appreciably affected. When 
thermal-diffusion and diffusion-therm0 effects are introduced 
the temperature gradient at the wall is larger; however, the 
energy flux at the wall becomes negative, causing tem- 
peratures in the boundary layer to fall beiow the free stream 
temperature. This OICUTS because the co~~rjbu~io~ of the 
diffusion-therm0 effect is in the opposite direction to the 
Fourier conduction effect. Increasing the ratio of Grashof 
numbers, RGr, increases the diffusion-therm0 effect. The 
dimensionless energy equation, equation (4), shows that the 
dominant term of the diffusion-therm0 effect, the con- 
centration gradient term, is multiplied by Rc,. Increasing 
this ratio increases the diffusion-thermo effect, resulting in a 
negative wall flux for suffrcientiy large Grashof number 
ratios. The last term in the energy equation is not directly 
related to the di~usion-Theo effk&. ft is due to the differ- 
ence between the specific heats of the diffusing and inert 
species. This term is multiplied by the inverse of the non- 
dimensional temperature ratio, T,, and R,,. When T, 
decreases, this term becomes significant. Since the effect of 
this term is in the same direction as the diffusion-therrno 
effect, for the helium-air mixture, reducing the non- 
dimensional temperature ratio results in a negative heat Bux 
at lower Grashof number ratios with smaller values of T,, as 
shown in Fig. 3. 

CONCLUSIONS 

The effects of including thermal-diffusion and diffusion- 
thermo transfer mechanisms on the transport of heat and 
mass from a vertical wall are presented. Transient results of 
the combined heat and mass transfer problem are similar to 
the results when only heat transfer effects are included. In 
both cases, the nondimensional wall heat flux reaches a mini- 
mum at a nondimensional time of approximately 2.5 and 
steady-state is achieved when the nondimensional time is 
greater than 5. 

For all cases considered in this study, the diffusion-thetrtlo 
is the dominant effect and the omission of the thermai- 
diffusion effect in the formulation does not alter the results. 
Steady-state results show that the nondimensional wall heat 
flux decreases with increasing dimensionless temperature 



2064 Technical Notes 

T, = 60. 
- ai= 0, Gr,/Gr = 0 
-- a,= 0, Gr,,,/Gr = 1.29 
... a,= -0.3, Gr,/Gr = 1.29 

--_ 
_...a_ *. 

. . . . . . . . . . .._ . . . . ...?...._ . . . . . . . . 
, 

0 1 2 3 4 5 6 7 8 

Nondimensional Position, v 

(a) 

T, = 60. 1 

- a,= 0, Gr,,,/Gr = 0 
_ -- a,= 0. Gr,/Gr = 1.29 

. . . . a,= -0.3, Gr, /Gr = 1.29 

0.0 ’ ’ 
0 1 2 3 4 5 6 7 a 

~ondim~nsjonal Position, q 

@I 

Fra. 2. (a) Effect of diffusion-therm0 and thermal-diffusion on the nondimensional temperature profile. 
(b) Effect of diffusion-therm0 and thermal-diffusion on the nondimensional concentration profile. 

Q ratio, indicating the strong effect of the dimensionless tem- 
CY 1.2 perature ratio on the diffusion-therm0 effect. Also, the non- 
%- II dimensional wall heat flux decreases slightly with increasing 
G Grashof number ratio when no coupling is considered. How- 
% 
9 

ever, as the dimensionless temperature ratio is decreased, the 
nondimensional wall heat flux shows a larger dependence on 

= 
g 

the Grashof number ratio. For a low value of the dimension- 

z 
less temperature ratio, which is characteristic of low absolute 

6 
0.2 temperature, the heat flux decreases with increasing Grashof 

‘I 0.0 ‘. ‘... number ratio and eventually reverses direction, causing heat 

E -0.2 
. . 

. . 
.x1., to flow from the colder fluid to the warmer wall. In this case, 

‘5 
T, = 20 ‘._T; L 60 the temperature in the boundary layer can fall below the free 

5 -0.4 ,. 

z 0.0 0.2 0.4 0.6 0.8 1.0 1.2 
stream temperature. Despite the larger temperature gradient 

1.4 caused by the lower temperature in the boundary layer, the 
Groshof Number Ratio, Gr,/Gr total wall heat flux decreases. This occurs because the diffu- 

sion-therm0 effect is larger than the Fourier conduction 
FIG. 3. Effect of Grashof number ratio and reduced tem- effect, which renders the nondimensional wall heat flux to be 

perature on the nondimensional wall heat flux. negative (i.e. heat flow to the wall). 
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